31 research outputs found

    ADEPS: a methodology for designing prognostic applications

    Get PDF
    Prognostics applications predict the future evolution of an asset under study, by diagnosing the actual health state and modeling the future degradation. Due to rapidly growing interest in prognostics, different prediction techniques have been developed independently without a consistent and systematic design. In this paper we formalize the prognostics design process with a novel methodology entitled ADEPS (Assisted Design for Engineering Prognostic Systems). ADEPS combines prognostics concepts with model-based safety assessment, criticality analysis, knowledge engineering and formal verification approaches. The main activities of ADEPS include synthesis of the safety assessment model from the design model, prioritization of the system failure modes, systematic prognostics model selection and verification of the adequacy of the prognostics results with respect to design requirements. By linking system-level safety assessment models and prognostics results, design and safety models are updated with online information about different failure modes. This step enables system-level health assessment including prognostics predictions of different failure modes. The end-to-end application of the methodology for the design and evaluation of a power transformer demonstrates the benefits of the proposed approach including reduced design time and effort, complete consideration of prognostics algorithms and updated system-level health assessment

    On the use of probabilistic model-checking for the verification of prognostics applications

    Get PDF
    Prognostics aims to improve asset availability through intelligent maintenance actions. Up-to-date remaining useful life predictions enable the optimization of maintenance planning. Verification of prognostics techniques aims to analyze if the prognostics application meets the design requirements. Online prognostics applications depend on the data-gathering hardware architecture to perform correct prognostics predictions. Accordingly, when verifying prognostics requirements compliance, it is necessary to include the effect of hardware failures on prognostics predictions. In this paper we investigate the use of formal verification techniques for the integrated verification of prognostics applications including hardware and software components. Focusing on the probabilistic model-checking approach, a case study from the power industry shows the validity of the proposed framework

    Supporting group maintenance through prognostics-enhanced dynamic dependability prediction

    Get PDF
    Condition-based maintenance strategies adapt maintenance planning through the integration of online condition monitoring of assets. The accuracy and cost-effectiveness of these strategies can be improved by integrating prognostics predictions and grouping maintenance actions respectively. In complex industrial systems, however, effective condition-based maintenance is intricate. Such systems are comprised of repairable assets which can fail in different ways, with various effects, and typically governed by dynamics which include time-dependent and conditional events. In this context, system reliability prediction is complex and effective maintenance planning is virtually impossible prior to system deployment and hard even in the case of condition-based maintenance. Addressing these issues, this paper presents an online system maintenance method that takes into account the system dynamics. The method employs an online predictive diagnosis algorithm to distinguish between critical and non-critical assets. A prognostics-updated method for predicting the system health is then employed to yield well-informed, more accurate, condition-based suggestions for the maintenance of critical assets and for the group-based reactive repair of non-critical assets. The cost-effectiveness of the approach is discussed in a case study from the power industry

    Improved dynamic dependability assessment through integration with prognostics

    Get PDF
    The use of average data for dependability assessments results in a outdated system-level dependability estimation which can lead to incorrect design decisions. With increasing availability of online data, there is room to improve traditional dependability assessment techniques. Namely, prognostics is an emerging field which provides asset-specific failure information which can be reused to improve the system level failure estimation. This paper presents a framework for prognostics-updated dynamic dependability assessment. The dynamic behaviour comes from runtime updated information, asset inter-dependencies, and time-dependent system behaviour. A case study from the power generation industry is analysed and results confirm the validity of the approach for improved near real-time unavailability estimations

    A model-based hybrid approach for circuit breaker prognostics encompassing dynamic reliability and uncertainty

    Get PDF
    Prognostics predictions estimate the remaining useful life of assets. This information enables the implementation of condition-based maintenance strategies by scheduling intervention when failure is imminent. Circuit breakers are key assets for the correct operation of the power network, fulfilling both a protection and a network reconfiguration role. Certain breakers will perform switching on a deterministic schedule, while operating stochastically in response to network faults. Both types of operation increase wear on the main contact, with high fault currents leading to more rapid ageing. This paper presents a hybrid approach for prognostics of circuit breakers, which integrates deterministic and stochastic operation through Piecewise Deterministic Markov Processes. The main contributions of this paper are (i) the integration of hybrid prognostics models with dynamic reliability concepts for a more accurate remaining useful life forecasting and (ii) the uncertain failure threshold modelling to integrate and propagate uncertain failure evaluation levels in the prognostics estimation process. Results show the effect of dynamic operation conditions on prognostics predictions and confirm the potential for its use within a condition-based maintenance strategy

    A data-driven health assessment method for electromechanical actuation systems

    Get PDF
    The design of health assessment applications for the electromechanical actuation system of the aircraft is a challenging task. Physics-of-failure models involve non-linear complex equations which are further complicated at the system-level. Data-driven techniques require run-to-failure tests to predict the remaining useful life. However, components are not allowed to run until failure in the aerospace engineering arena. Besides, when adding new monitoring elements for an improved health assessment, the airliner sets constraints due to the increased cost and weight. In this context, the health assessment of the electromechanical actuation system is a challenging task. In this paper we propose a data-driven approach which estimates the health state of the system without run-to-failure data and limited health information. The approach combines basic reliability theory with Bayesian concepts and obtained results show the feasibility of the technique for asset health assessment

    Performance assessment of domestic photovoltaic power plant with a storage system

    Get PDF
    Grid-connected low voltage photovoltaic power plants cover the majority of the power capacity installed in Italy. They offer an important contribution to the power demand of the utilities connected but, due to the nature of the solar resource, the night time consumption can be satisfied only withdrawing the energy by the national grid, at the price of the energy distributor. Thanks to the improvement of storage technologies and the decreasing of costs, the installation of a system of battery looks a promising solution. In this paper, a model-based approach to analyze and discuss the performance of a domestic photovoltaic power plant with a storage system is presented

    Prognostics & health management oriented data analytics suite for transformer health monitoring

    Get PDF
    Condition monitoring of power transformers is crucial for the reliable and cost-effective operation of the power grid. The unexpected failure of a transformer can lead to different consequences ranging from a lack of export capability, with the corresponding economic penalties, to catastrophic failure, with the associated health, safety, and economic effects. With the advance of machine learning techniques, it is possible to enhance traditional transformer health monitoring techniques with data-driven and expert-based prognostics and health management (PHM) applications. Accordingly, this paper reviews the experience of the authors in the implementation of machine learning methods for transformer condition monitoring

    FPGA-Based Degradation and Reliability Monitor for Underground Cables

    Get PDF
    The online Remaining Useful Life (RUL) estimation of underground cables and their reliability analysis requires obtaining the cable failure time probability distribution. Monte Carlo (MC) simulations of complex thermal heating and electro-thermal degradation models can be employed for this analysis, but uncertainties need to be considered in the simulations, to produce accurate RUL expectation values and confidence margins for the results. The process requires performing large simulation sets, based on past temperature or load measurements and future load predictions. Field Programmable Gate Arrays (FPGAs) permit accelerating simulations for live analysis, but the thermal models involved are complex to be directly implemented in hardware logic. A new standalone FPGA architecture has been proposed for the fast and on-site degradation and reliability analysis of underground cables, based on MC simulation, and the effect of load uncertainties on the predicted cable End Of Life (EOL) has been analyzed from the results

    Selecting appropriate machine learning classifiers for DGA diagnosis

    Get PDF
    Dissolved gas analysis (DGA) is a common method of assessing transformer health. There are a number of machine learning classifiers reported to give a high accuracy on specific datasets, such as Artificial Neural Networks or Support Vector Machines. When these methods reach the same conclusion about the type of fault present, this can give an increased confidence in the veracity of the diagnosis. However, it is critical to analyze and quantify the strength of these classifiers in the presence of conflicting data to test their practicality for usage in the field. This paper investigates the adequacy of different machine learning based DGA diagnosis models in the presence of conflicting data. The proposed method will aid engineers with the selection of machine learning models so as to maximize the usability and accuracy in the presence of conflicting data
    corecore